Telomere dysfunction puts the brakes on oncogene-induced cancers.
نویسندگان
چکیده
Senescence represents a major tumour suppressor checkpoint activated by telomere dysfunction or cellular stress factors such as oncogene activation. In this issue of The EMBO Journal, Suram et al (2012) reveal a surprising interconnection between oncogene activation and telomere dysfunction induced senescence. The study supports an alternative model of tumour suppression, indicating that oncogene-induced accumulation of telomeric DNA damage contributes to the induction of senescence in telomerase-negative tumours. Telomere shortening limits the proliferative capacity of primary human cells after 50–70 cell divisions by induction of replicative senescence activated by critically short, dysfunctional telomeres. Different mechanisms were thought to initiate senescence in response to oncogene activation, which occurs abruptly within a few cell doublings (Serrano et al, 1997). Oncogene-induced senescence (OIS) involves an activation of DNA damage signals at stalled replication forks induced by DNA replication stress (Bartkova et al, 2006; Di Micco et al, 2006). Replication fork stalling in response to oncogene activation preferentially affects common fragile sites of the DNA (Tsantoulis et al, 2008). The ends of eukaryotic chromosomes—the telomeres–represent common fragile sites that are sensitive to replication fork stalling (Sfeir et al, 2009). These data made it tempting to speculate whether replication fork stalling at telomeres was causatively involved in OIS. Studies on replicative senescence in human fibroblast also supported this possibility showing that mitogenic signals amplify DNA damage responses in senescent cells (Satyanarayana et al, 2004). Multiple studies revealed experimental evidences that senescence suppresses tumour progression in mouse models and early human tumours (for review see Collado and Serrano, 2010). The relative contribution of OIS and telomere dysfunction induced senescence (TDIS) to tumour suppression and possible interconnections between the two pathways at the level of checkpoint induction were not investigated in previous studies. In this issue of The EMBO Journal, Suram et al (2012) describe the presence of TDIS in human precursor lesions but not in the corresponding malignant tumours. Mechanistically, the study shows that oncogenic signals cause replication fork stalling, resulting in telomeric DNA damage accumulation and activation of DNA damage checkpoints reminiscent to TDIS. Telomerase expression does not rescue replication fork stalling but prevents the accumulation of DNA damage at telomeres allowing a bypass of OIS. The study has several important implications for molecular pathways and therapeutic approaches in cancer that need to be further explored (Figure 1): (i) Telomere length independent roles of telomeres in tumour suppression The classical model of telomere-dependent tumour suppression indicates that proliferation-dependent telomere shortening leads to telomere dysfunction, activation of DNA damage checkpoints, and induction of senescence suppres-
منابع مشابه
Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions
In normal human somatic cells, telomere dysfunction causes cellular senescence, a stable proliferative arrest with tumour suppressing properties. Whether telomere dysfunction-induced senescence (TDIS) suppresses cancer growth in humans, however, is unknown. Here, we demonstrate that multiple and distinct human cancer precursor lesions, but not corresponding malignant cancers, are comprised of c...
متن کاملOncogene-induced senescence: putting the brakes on tumor development.
Cellular senescence, a permanent cell cycle arrest, is considered a safeguard mechanism that may prevent aged or abnormal cells from further expansion. Although the term "replicative senescence" stands for the widely accepted model of a terminal growth arrest due to telomere attrition, the significance of "oncogene-inducible senescence" remained an issue of debate over the years. A number of re...
متن کاملTelomere dysfunction alters the chemotherapeutic profile of transformed cells.
Telomerase inhibition has been touted as a novel cancer-selective therapeutic goal based on the observation of high telomerase levels in most cancers and the importance of telomere maintenance in long-term cellular growth and survival. Here, the impact of telomere dysfunction on chemotherapeutic responses was assessed in normal and neoplastic cells derived from telomerase RNA null (mTERC(-/-)) ...
متن کاملCooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression.
Hepatocellular carcinoma is among the most common and lethal cancers in humans. Hepatocellular carcinoma is commonly associated with physical or functional inactivation of the p53 tumor suppressor, high levels of chromosomal instability, and disease conditions causing chronic cycles of hepatocyte death and regeneration. Mounting evidence has implicated regeneration-induced telomere erosion as a...
متن کاملStressed telomeres without POT1 enhance tumorigenesis
Chromosome ends in mammalian cells are protected by a specialized 6 subunit complex called shelterin. Mutations in one component of this complex, POT1, have been associated with a variety of cancers including solid and lymphoid tumors [1]. Interestingly, the vast majority of the POT1 mutations cluster within its DNAbinding domains, the so-called OB-fold domains. We have recently uncovered the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 31 13 شماره
صفحات -
تاریخ انتشار 2012